Home
Class 12
MATHS
If theta is the angle between unit vecto...

If `theta` is the angle between unit vectors `veca and vecb` then `sin(theta/2)` is (A) `1/2|veca-vecb|` (B) `1/2|veca+vecb|` (C) `1/2|vecaxxvecb|` (D) `1/sqrt(2)sqrt(1-veca.vecb)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If theta is the angle between the unit vectors veca and vecb , then prove that i. cos((theta)/2)=1/2|veca+vecb| ii. sin (theta/2)=1/2|veca-vecb|

If theta is the angle between the unit vectors veca and vecb , then prove that i. cos((theta)/2)=1/2|veca+vecb| ii. sin (theta/2)=1/2|veca-vecb|

If theta is the angle between unit vectors vecA and vecB , then ((1-vecA.vecB))/(1+vecA.vecB)) is equal to

Consider three vectors veca, vecb and vecc . Vectors veca and vecb are unit vectors having an angle theta between them For vector veca, |veca|^2=veca.veca If veca_|_vecb and veca_|_vecc then veca||vecbxxvecc If veca||vecb, then veca=tvecb Now answer the following question: The value of sin(theta/2) is (A) 1/2 |veca-vecb| (B) 1/2|veca+vecb| (C) |veca-vecb| (D) |veca+vecb|

The vector (veca-vecb)xx(veca+vecb) is equal to (A) 1/2 (vecaxxvecb) (B) vecaxxvecb (C) 2(veca+vecb) (D) 2(vecaxxvecb)

Find the angle between two vectors veca and vecb with magnitudes 1 and 2 respectively and satisfying veca.vecb.=1

The angle between two vectors veca and vecb with magnitudes sqrt(3) and 4, respectively and veca.vecb = 2sqrt(3) is:

If veca and vecb are two non collinear unit vectors and |veca+vecb|= sqrt3 , then find the value of (veca- vecb)*(2veca+ vecb)

Let veca and vecb be unit vectors such that |veca+vecb|=sqrt3 . Then find the value of (2veca+5vecb).(3veca+vecb+vecaxxvecb)