Home
Class 12
MATHS
Let vecu, vecv, vecw be three unit vecto...

Let `vecu, vecv, vecw` be three unit vectors such that `vecu+vecv+vecw=veca,veca.vecu=3/2, veca.vecv=7/4 |veca|=2,` then (A) `vecu.vecv=3/2` (B) `vecu.vecw=0` (C) `vecu.vecw=-1/4` (D) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If vecu, vecv, vecw are three vectors such that [vecu vecv vecw]=1 , then 3[vecu vecv vecw]-[vecv vecw vecu]-2[vecw vecv vecu]=

Let vecu, vecv and vecw be three unit vectors such that vecu + vecv + vecw = veca, vecuxx (vecv xx vecw)= vecb, (vecu xx vecv) xx vecw= vecc, vec a.vecu=3//2, veca.vecv=7//4 and |veca|=2 Vector vecu is

Let vecu,vecv and vecw be vectors such that vecu+ vecv + vecw =0 if |vecu|= 3, |vecv|=4 and |vecw|=5 then vecu.vecv + vecv .vecw + vecw + vecw .vecu is

Let vecu,vecv and vecw be vectors such that vecu+ vecv + vecw =0 if |vecu|= 3, |vecv|=4 and |vecw|=5 then vecu.vecv + vecv .vecw + vecw + vecw .vecu is

Let vecu and vecv be unit vectors such that vecu xx vecv + vecu = vecw and vecw xx vecu = vecv . Find the value of [vecu vecv vecw ]

If vecu,vecv and vecw are vectors such that vecu+vecv+vecw=vec0 then [vecu+vecv vecv+vecw vecw+vecu])= (A) 1 (B) [vecu vecv vecw] (C) 0 (D) -1

If vecu, vecv, vecw are three non-coplanar vectors, the (vecu+vecv-vecw).(vecu-vecv)xx(vecv-vecw) equals

If vecu,vecv and vecw are three non coplanar vectors then (vecu+vecv-vecw).(vecu-vecc)xx(vecv-vecw) equals (A) vecu.vecvxxvecw (B) vecu.vecwxxvecv (C) 3vecu.vecuxxvecw (D) 0

If veca and vecb are two non collinear vectors and vecu=veca-(veca.vecb)vecb and vecv=vecaxxvecb then |vecv| is (A) |vecu| (B) |vecu|+|vecu.vecb| (C) |vecu|+|vecu.veca| (D) none of these

If veca,vecb,vecc are three unit vectors such that veca+vecb+vecc=0, then veca.vecb+vecb.vecc+vecc.veca is equal to (A) -1 (B) 3 (C) 0 (D) -3/2