Home
Class 12
MATHS
Prove that the shortest distance between...

Prove that the shortest distance between two lines AB and CD is `(|(vecc-veca).(vecb-veca)xx(vecd-vecc)|)/(|(vecb-veca)xxvec(d-vecc)|)` where `veca,vecb,vecc,vecd` are the position vectors of points A,B,C,D respectively.

Promotional Banner

Similar Questions

Explore conceptually related problems

If |{:(veca,vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(veca.vecc,vecb.vecc,veca.vecc)| where veca, vecb,vecc are coplanar then:

Show that: (veca-vecd)xx(vecb-vecc)+(vecb-vecd)xx(vecc-veca)+(vecc-vecd)xx(veca-vecb) is independent of vecd .

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

Show that [veca vecb vecc]\^2=|(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc)|

For any these vectors veca,vecb, vecc the expression (veca-vecb).{(vecb-vecc)xx(vecc-veca)} equals

Prove that: [(vecaxxvecb)xx(vecaxxvecc)].vecd=[veca vecb vecc](veca.vecd)

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

The shortest distance between the lines vecr-veca+kvecb and vecr=veca+lvecc is ( vecb and vecc are non collinear) (A) 0 (B) |vecb.vecc| (C) (|vecbxxvecc|)/(|veca|) (D) (|vecb.vecc|)/(|veca|)

for any four vectors veca,vecb, vecc and vecd prove that vecd. (vecaxx(vecbxx(veccxxvecd)))=(vecb.vecd)[veca vecc vecd]

for any four vectors veca,vecb, vecc and vecd prove that vecd. (vecaxx(vecbxx(veccxxvecd)))=(vecb.vecd)[veca vecc vecd]