Home
Class 12
MATHS
If veca,vecb,vecc be three non coplanar ...

If `veca,vecb,vecc` be three non coplanar vectors show that `vecbxxvecc,veccxxveca,vecaxxvecb` are non coplanar.

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca,vecb,vecc are coplanar then show that vecaxxvecb, vecbxxvecc and veccxxveca are also coplanar.

If veca+vecb ,vecc are any three non- coplanar vectors then the equation [vecbxxvecc veccxxveca vecaxxvecb]x^(2) + [veca+vecbvecb+veccvecc+veca] x+1 +[vecb-veccvecc -vecc-vecaveca -vecb] =0 has roots

If veca, vecb, vecc, vecd are coplanar vectors, then (vecaxxvecb)xx(veccxxvecd)=

If veca, vecb, vecc are non coplanar vectors such that vecbxxvecc=veca, vecaxxvecb=vecc aned veccxxveca=vecb then (A) |veca|+|vecb|+|vecc|=3 (B) |vecb|=1 (C) |veca|=1 (D) none of these

If the three vectors veca,vecb,vecc are non coplanar express each of vecbxxvecc, veccxxveca, vecaxxvecb in terms of veca,vecb,vecc .

if veca,vecb,vecc are non coplanar and non zero vectors such that vecbxxvecc=veca,vecaxxvecb=vecc and veccxxveca=vecb then 1 (a) |a|=1 (b)|a|=2 (c) |a|=3 (d) |a|=4

if veca,vecb,vecc are non coplanar and non zero vectors such that vecbxxvecc=veca,vecaxxvecb=vecc and veccxxveca=vecb then 3. (a) |a|+|b|+|c| =0 (b) |a|+|b|+|c|=2 (c) |a|+|b|+|c| =3 (d) none of these

If veca, vecb, vecc are three vectors, then [(vecaxxvecb, vecbxxvecc, veccxxveca)]=

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)