Home
Class 12
MATHS
If the three vectors veca,vecb,vecc are ...

If the three vectors `veca,vecb,vecc` are non coplanar express each of `vecbxxvecc, veccxxveca, vecaxxvecb` in terms of `veca,vecb,vecc`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If the three vectors vec,vecb,vecc are non coplanar express vec,vecb,vecc each in terms of the vectors vecbxxvecc, veccxxveca,vecaxxvecb

If veca,vecb,vecc be three non coplanar vectors show that vecbxxvecc,veccxxveca,vecaxxvecb are non coplanar.

Prove that veca,vecb,vecc are coplanar iff vecaxxvecb,vecbxxvecc,veccxxveca are coplanar

If veca,vecb,vecc are coplanar then show that vecaxxvecb, vecbxxvecc and veccxxveca are also coplanar.

If veca, vecb, vecc are non coplanar vectors such that vecbxxvecc=veca, vecaxxvecb=vecc aned veccxxveca=vecb then (A) |veca|+|vecb|+|vecc|=3 (B) |vecb|=1 (C) |veca|=1 (D) none of these

Express veca,vecb,vecc in terms of vecbxxvecc, veccxxveca and vecaxxvecb .

If veca, vecb, vecc are three vectors, then [(vecaxxvecb, vecbxxvecc, veccxxveca)]=

If veca+vecb ,vecc are any three non- coplanar vectors then the equation [vecbxxvecc veccxxveca vecaxxvecb]x^(2) + [veca+vecbvecb+veccvecc+veca] x+1 +[vecb-veccvecc -vecc-vecaveca -vecb] =0 has roots

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to