Home
Class 12
MATHS
Prove that for any nonzero scalar a the ...

Prove that for any nonzero scalar a the vectors `aveci+2cvecj-3aveck, (2a+1)veci+(2a+3)vecj+(a+1)veck and (3a+5)veci+(a+5)vecj+(a+2)veck` are non coplanar

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c be the pth, qth and rth term respectively of H.P. show that the vectors bc veci+pvecj+veck, ca veci+q vecj+veck and ab veci+r vecj+veck are coplanar.

Show that the vectors veci-3vecj+2veck, 2veci -4vecj-veck and 3veci+2vecj-veck are linearly independent.

Let veca =veci -veck, vecb = xveci+ vecj + (1-x)veck and vecc =y veci +xvecj + (1+x -y)veck . Then veca, vecb and vecc are non-coplanar for

A unit vector coplanar with veci + vecj + 2veck and veci + 2 vecj + veck and perpendicular to veci + vecj + veck is _______

A unit vector coplanar with veci + vecj + 2veck and veci + 2 vecj + veck and perpendicular to veci + vecj + veck is _______

Prove that the four points 4veci+5veci+veck, -(vecj+veck),3veci+9vecj+4veck and 4(-veci+vecj+veck) are coplanar

The number of vectors of unit length perpendicular to the vectors veca = 2veci + vecj + 2veck and vecb = vecj + veck is:

Find the value of the constant lamda so that vectors veca=vec(2i)-vecj+veck, vecb=veci+vec(2j)-vec(3j), and vecc=vec(3i)+vec(lamdaj)+vec(5k) are coplanar.

Find the dot and cross product of the vectors veca=2veci-3vecj+veck and vecb= -veci+3vecj+veck

Find the set of vectors reciprocal to the set of vectors 2veci+3vecj-veck, veci-vecj-veck, -veci+2vecj+2veck