Home
Class 12
MATHS
Prove that (vecbxxvecc)xx(veccxxveca)=[v...

Prove that `(vecbxxvecc)xx(veccxxveca)=[veca vecb vecc]vecc`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vecP = (vecbxxvecc)/([vecavecbvecc]).vecq=(veccxxveca)/([veca vecb vecc])and vecr = (vecaxxvecb)/([veca vecbvecc]), " where " veca,vecb and vecc are three non- coplanar vectors then the value of the expression (veca + vecb + vecc ). (vecq+ vecq+vecr) is

Prove that: [vecaxxvecb ,vecbxxvecc ,veccxxveca] = [veca vecb vecc]^2

Let veca,vecb, vecc be any three vectors, Statement 1: [(veca+vecb, vecb+vecc,vecc+veca)]=2[(veca, vecb, vecc)] Statement 2: [(vecaxxvecb, vecbxxvecc, veccxxveca)]=[(veca, vecb, vecc)]^(2)

If vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and [veca vecb vecc]=(1)/(3) , then x+y+z is equal to

If vec(alpha)=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and [veca vecb vecc]=1/8 , then x+y+z=

Prove that [veca+vecb, vecb+vecc ,vecc+veca]=2[veca vecb vecc]

Prove that [vecaxxvecb, vecbxxvecc, veccxxveca] = [[veca.veca, veca.vecb, veca.vecc], [veca.vecb,vecb.vecb, vecb.vecc], [veca.vecc, vecb.vecc,vecc.vecc]] = [veca, vecb, vecc]^2,Hence show that vectors vecaxxvecb, vecbxxvecc, veccxxveca are non-coplanar if and only if vectors veca, vecb, vecc are non-coplanar

Let veca, vecb and vec c be any three vectors; then prove that [[vecaxxvecb, vecbxxvecc, veccxxveca]] = [[veca, vecb, vecc]]^2

If [(vecaxxvecb, vecbxxvecc, veccxxveca)]=lamda[(veca, vecb, vecc)]^(2) , then lamda is equal to

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca