Home
Class 12
MATHS
Show that the components of vecb paralle...

Show that the components of `vecb` parallel to `veca` and perpendicular to it are `((veca.vecb)veca)/veca^2 and ((vecaxxvecb)veca))/a^2` respectively.

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that, (veca-vecb)xx(veca+vecb) = 2(vecaxxvecb) .

Find veca.vecb if |veca|2, |vecb|=5,a and |vecaxxvecb|=8

Prove that: (2veca-vecb)xx (veca+2vecb)=5vecaxxvecb .

Prove that (vecaxxvecb)^2=veca^2b^2-(veca.vecb)^2 .

The resolved part of the vector veca along the vector vecb is veclamda and that perpendicular to vecb is vecmu . Then (A) veclamda=((veca.vecb).veca)/veca^2 (B) veclamda=((veca.vecb).vecb)/vecb^2 (C) vecmu=((vecb.vecb0veca-(veca.vecb)vecb)/vecb^2 (D) vecmu=(vecbxx(vecaxxvecb))/vecb^2

veca*vecb=abs(vecaxxvecb) then abs(veca-vecb) is

Prove that: |(veca+vecb)xx(veca-vecb)|=2ab if veca_|_vecb

The resultant of vecA and vecB is perpendicular to vecA . What is the angle between vecA and vecB ?

Given |veca|=10, |vecb|=2 and veca.veca=12 , find |vecaxxvecb|

IF veca and vecb re two vectors show that (vecaxxvecb)^2=a^2b^2-(veca.vecb)^2