Home
Class 12
MATHS
If veca,vecb,vecc are mutually perpendic...

If `veca,vecb,vecc` are mutually perpendicular vectors each of magnitude 3 then `|veca+vecb+vec|` is equal (A) 3 (B) 9 (C) `3sqrt(3)` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca,vecb,vecc are mutually perpendicular vectors of equal magnitude show that veca+vecb+vecc is equally inclined to veca, vecb and vecc

If veca, vecb, vecc are mutually perpendicular vectors having magnitude 1,2,3 respectively, then [vec(a)+vecb+vecc, vecb-veca, vecc] =

If veca,vecb,vec(c) are mutually perpendicular vectors having magnitudes 1,2,3 respectivley, then [veca+vecb+vec(c)" "vecb-veca" "vec(c)] =

If veca,vecb are any two perpendicular vectors of equal magnitude and |3veca+4vecb|+|4veca-3vecb|=20 then |veca| equals :

If veca,vecb, vecc are unit coplanar vectors then the scalar triple product [2veca-vecb 2vecb-c vec2c-veca] is equal to (A) 0 (B) 1 (C) -sqrt(3) (D) sqrt(3)

If veca,vecb,vecc are three unit vectors such that veca+vecb+vecc=0, then veca.vecb+vecb.vecc+vecc.veca is equal to (A) -1 (B) 3 (C) 0 (D) -3/2

if veca,vecb and vecc are mutally perpendicular vectors of equal magnitudes, then find the angle between vectors and veca+ vecb+vecc .

If veca,vecb,vecc are unit vectors such that veca+vecb+vecc=0 then veca.vecb+vecb.vecc+vecc.veca= (A) 3/2 (B) -3/2 (C) 2/3 (D) 1/2