Home
Class 12
MATHS
If vector veca lies in the plane of vect...

If vector `veca` lies in the plane of vectors `vecb and vecc` which of the following is correct? (A) `veca.vecbxxvec=-1` (B) `veca.vecbxxvecc=0` (C) `veca.vecbxxvec=1` (D) `veca.vecbxxvecc=2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca lies in the plane of vectors vecb and vecc , then which of the following is correct?

If veca,vecb and vecc are three vectors of which every pair is non colinear. If the vector veca+vecb and vecb+vecc are collinear with the vector vecc and veca respectively then which one of the following is correct? (A) veca+vecb+vecc is a nul vector (B) veca+vecb+vecc is a unit vector (C) veca+vecb+vecc is a vector of magnitude 2 units (D) veca+vecb+vecc is a vector of magnitude 3 units

If veca is perpendiculasr to both vecb and vecc then (A) veca.(vecbxxvecc)=vec0 (B) vecaxx(vecbxvecc)=vec0 (C) vecaxx(vecb+vecc)=vec0 (D) veca+(vecb+vecc)=vec0

If vecc=vecaxxvecb and vecb=veccxxveca then (A) veca.vecb=vecc^2 (B) vecc.veca.=vecb^2 (C) veca_|_vecb (D) veca||vecbxxvecc

If vecax(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0 , and [(veca,vecb,vecc)]=

If the vectors veca,vecb,vecc form the sides BC,CA and AB respectively of a triangle ABC then (A) veca.(vecbxxvecc)=vec0 (B) vecaxx(vecbxvecc)=vec0 (C) veca.vecb=vecc=vecc=veca.a!=0 (D) vecaxxvecb+vecbxxvecc+veccxxvecavec0

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 veca.vecb\'=veca.veca\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . The value of [veca\' vecb\' vecc\']^-1 is (A) 2[veca vecb vecc] (B) [veca,vecb,vecc] (C) 3[veca vecb vecc] (D) 0

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 veca.vecb\'=veca.veca\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . The value of (vecaxxveca\')+(vecbxxvecb)+(vecccxxveccc\') is (A) veca+vecb+vec (B) veca\'+vecb\'+vec\' (C) 0 (D) none of these

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 veca.vecb\'=veca.veca\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . [veca,vecb,vecc]-(veca\'xxvecb\')+(vecb\'xxvec\')+(vecc\'xxveca\')= (A) veca+vecb+vecc (B) veca+vecb-vecc (C) 2(veca+vecb+vecc) (D) 3(veca\'+vecb\'+vecc\')

Show that: (veca+vecb).{(vecb+vecc)xx(vecc+veca)|=2{veca.(vecbxxvecc)}