Home
Class 12
MATHS
If veca vecb be any two mutually perpend...

If `veca vecb` be any two mutually perpendiculr vectors and `vecalpha` be any vector then `|vecaxxvecb|^2 ((veca.vecalpha)veca)/(veca|^2)+|vecaxvecb|^2 ((vecb.vecalpha)vecb)/(|vecb|^2)-|vecaxxvecb|^2vecalpha=` (A) `|(veca.vecb)vecalpha|(vecaxxvecb)` (B) `[veca vecb vecalpha](vecbxxveca)` (C) `[veca vecb vecalpha](vecaxxvecb)` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that | vecaxxvecb | ^ 2 = det ((veca.veca, veca.vecb), (veca.vecb, vecb.vecb))

If vecb and vecc are any two orthogonal unit vectors and veca is any vector, then (veca.vecb)vecb + (veca.vecc)vecc + (veca.(vecb xx vecc))/|vecb xx vecc|^(2) (vecb xx vecc) =

IF veca and vecb re two vectors show that (vecaxxvecb)^2=a^2b^2-(veca.vecb)^2

If veca,vecb,vecc are mutually perpendicular vector and veca=alpha(vecaxxvecb)+beta(vecbxxvecc)+gamma(veccxxveca) and [veca vecb vecc]=1 then vecalpha+vecbeta+vecgamma= (A) |veca|^2 (B) -|veca|^2 (C) 0 (D) none of these

veca*vecb=abs(vecaxxvecb) then abs(veca-vecb) is

For two vectors veca and vecb,veca,vecb=|veca||vecb| then (A) veca||vecb (B) veca_|_vecb (C) veca=vecb (D) none of these

If veca and vecb are two vectors , then prove that (vecaxxvecb)^(2)=|{:(veca.veca" ",veca.vecb),(vecb.veca" ",vecb.vecb):}|

If veca and vecb are two vectors , then prove that (vecaxxvecb)^(2)=|{:(veca.veca" ",veca.vecb),(vecb.veca" ",vecb.vecb):}|

The vector (veca-vecb)xx(veca+vecb) is equal to (A) 1/2 (vecaxxvecb) (B) vecaxxvecb (C) 2(veca+vecb) (D) 2(vecaxxvecb)

If |vecaxxvecb|=2,|veca.vecb|=2 , then |veca|^(2)|vecb|^(2) is equal to