Home
Class 12
MATHS
The vector vecaxx(vecbxxvecc) can be rep...

The vector `vecaxx(vecbxxvecc)` can be represented in the form (A) `alpha veca` (B) `alphavecb` (C) `alhavecc` (D) `alphavecb+betavecc`

Promotional Banner

Similar Questions

Explore conceptually related problems

The vector (veca-vecb)xx(veca+vecb) is equal to (A) 1/2 (vecaxxvecb) (B) vecaxxvecb (C) 2(veca+vecb) (D) 2(vecaxxvecb)

If veca is perpendicular to vecb then the vector vecaxx[vecaxx{vecaxx(vecaxxvecb)}] is equla (A) |veca|^2vecb (B) |veca|vecb (C) |veca|^3vecb (D) |veca|^4vecb

If veca,vecb,vecc are any thre vectors then (vecaxxvecb)xxvecc is a vector (A) perpendicular to vecaxxvecb (B) coplanar with veca and vecb (C) parallel to vecc (D) parallel to either veca or vecb

If vector veca lies in the plane of vectors vecb and vecc which of the following is correct? (A) veca.vecbxxvec=-1 (B) veca.vecbxxvecc=0 (C) veca.vecbxxvec=1 (D) veca.vecbxxvecc=2

If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) where veca, vecb and vecc are any three vectors such that veca.vecb!=0, vecb. vecc!=0 then veca and vecc are

If vecc=vecaxxvecb and vecb=veccxxveca then (A) veca.vecb=vecc^2 (B) vecc.veca.=vecb^2 (C) veca_|_vecb (D) veca||vecbxxvecc

If the vectors veca,vecb,vecc form the sides BC,CA and AB respectively of a triangle ABC then (A) veca.(vecbxxvecc)=vec0 (B) vecaxx(vecbxvecc)=vec0 (C) veca.vecb=vecc=vecc=veca.a!=0 (D) vecaxxvecb+vecbxxvecc+veccxxvecavec0

If veca, vecb, vecc are non coplanar vectors such that vecbxxvecc=veca, vecaxxvecb=vecc aned veccxxveca=vecb then (A) |veca|+|vecb|+|vecc|=3 (B) |vecb|=1 (C) |veca|=1 (D) none of these

For two vectors veca and vecb,veca,vecb=|veca||vecb| then (A) veca||vecb (B) veca_|_vecb (C) veca=vecb (D) none of these

The vector veca+vecb bisects the angle between the vectors hata and hatb if (A) |veca|+|vecb|=0 (B) angle between veca and vecb is zero (C) |veca|=|vecb|=0 (D) none of these