Home
Class 12
MATHS
If veca is any vector and hati,hatj and ...

If `veca` is any vector and `hati,hatj and hatk` are unit vectors along the x,y and z directions then `hatixx(vecaxxhati)+hatjxx(vecaxxhatj)+hatkxx(vecaxxveck)=` (A) `veca (B) `-veca` (C) `2veca` (D) `0

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that hati xx(vecaxxveci)+hatjxx(vecaxxvecj)+hatkxx(vecaxxveck)=2veca

For an vector veca the value of hatixx(vecaxxveci)+hatjxx(vecaxxhatj)+hatkxx(vecaxxveck) , is

prove that (veca.hati)(vecaxxhati)+(veca.hatj)(vecaxxhatj)+(veca.hatk)(vecaxxhatk)=vec0

prove that (veca.hati)(vecaxxhati)+(veca.hatj)(vecaxxhatj)+(veca.hatk)(vecaxxhatk)=vec0

(veca.hati)(vecaxxhati)+(veca.hatj)+(veca.hatk)(vecaxxhatk) is equal to

Find the unit vector in the direction of the vector veca=hati+hatj+2hatk .

|vecaxxhati|^2+|vecaxxhatj|^2+|vecaxxhatk|^2= (A) |veca|^2 (B) 2|veca|^2 (C) 3|veca|^2 (D) 4|veca|^2

For any vector veca the value of (vecaxxhati)^2+(vecaxxhatj)^2+(vecaxxhatk)^2 is equal to (A) 4veca^2 (B) 2veca^2 (C) veca^2 (D) 3veca^2

If veca is any non-zero vector, then (veca.hati).hati+(veca.hatj).hatj+(veca.veck)hatk is equal to …….

Find the unit vector in the direction of the vector veca = 2hati+2sqrt2hatj-3hatk.