Home
Class 12
MATHS
If (vecaxxvecb)xx(vecbxxvecc)=vecb, wher...

If `(vecaxxvecb)xx(vecbxxvecc)=vecb, where veca,vecb and vecc` are non zero vectors then (A) `veca,vecb and vecc can be coplanar` (B) `veca,vecb and vecc` must be coplanar (C) `veca,vecb and vecc `cannot be coplanar (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) where veca, vecb and vecc are any three vectors such that veca.vecb!=0, vecb. vecc!=0 then veca and vecc are

If vecr.veca=vecr.vecb=vecr.vecc=0 " where "veca,vecb and vecc are non-coplanar, then

If vecA,vecB and vecC are coplanar vectors, then

If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,10vecc-23veca)]

If veca, vecb and vecc 1 are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb and vecc 1 are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

Prove that veca,vecb,vecc are coplanar iff vecaxxvecb,vecbxxvecc,veccxxveca are coplanar

If veca, vecb, vecc are three non-zero vectors such that veca + vecb + vecc=0 and m = veca.vecb + vecb.vecc + vecc.veca , then:

If veca,vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,12vecc-23vecb)] is equal to

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to