Home
Class 12
MATHS
If veca is any then |veca.hati|^2+|veca....

If `veca` is any then `|veca.hati|^2+|veca.hati|^2+|veca.hatk|^2=` (A) `|veca|^2` (B) `|veca|` (C) `2|vecalpha|` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

|vecaxxhati|^2+|vecaxxhatj|^2+|vecaxxhatk|^2= (A) |veca|^2 (B) 2|veca|^2 (C) 3|veca|^2 (D) 4|veca|^2

For any vector veca the value of (vecaxxhati)^2+(vecaxxhatj)^2+(vecaxxhatk)^2 is equal to (A) 4veca^2 (B) 2veca^2 (C) veca^2 (D) 3veca^2

For any vector veca |veca xx hati|^(2) + |veca xx hatj|^(2) + |veca xx hatk|^(2) is equal to

Given three vectors veca=hati-3hatj,vecb=2hati-thatj and vecc=-2hati+21hatj such that vecalpha=veca+vecb+vecc . Then the resolution of te vector vecalpha into components with respect to veca and vecb is given by (A) 3veca-2vecb (B) 2veca-3vecb (C) 3vecb-2veca (D) none of these

If veca is any non-zero vector, then (veca.hati).hati+(veca.hatj).hatj+(veca.veck)hatk is equal to …….

If veca vecb be any two mutually perpendiculr vectors and vecalpha be any vector then |vecaxxvecb|^2 ((veca.vecalpha)veca)/(veca|^2)+|vecaxvecb|^2 ((vecb.vecalpha)vecb)/(|vecb|^2)-|vecaxxvecb|^2vecalpha= (A) |(veca.vecb)vecalpha|(vecaxxvecb) (B) [veca vecb vecalpha](vecbxxveca) (C) [veca vecb vecalpha](vecaxxvecb) (D) none of these

If veca is any vector and hati,hatj and hatk are unit vectors along the x,y and z directions then hatixx(vecaxxhati)+hatjxx(vecaxxhatj)+hatkxx(vecaxxveck)= (A) veca (B) -veca (C) 2veca (D) 0

(veca.hati)(vecaxxhati)+(veca.hatj)+(veca.hatk)(vecaxxhatk) is equal to

Let veca = 3hati + 2hatj and vecb = 2hati + 3hatj . Is |veca| = |vecb| ? Is veca = vecb ?

If veca=2hati+hatj+2hatk then the value of |hati xx(veca xxhati)|^2+|hatj xx(veca xx hatj)|^2+|hatk xx(veca xx hatk)|^2 is