Home
Class 12
MATHS
If vecr.veca=vecr.vecb=vecr.vecc=1/2 for...

If `vecr.veca=vecr.vecb=vecr.vecc=1/2` for some non zero vector `vecr and veca,vecb,vecc` are non coplanar, then the area of the triangle whose vertices are `A(veca),B(vecb) and C(vecc0` is (A) `|[veca vecb vecc]|` (B) `|vecr|` (C) `|[veca vecb vecr]vecr|` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If vecr.veca=vecr.vecb=vecr.vecc=0 for some non-zero vectro vecr , then the value of [(veca, vecb, vecc)] is

If vecr.veca=0,vecr.vecb=0andvecr.vecc=0 for some non-zero vector vecr , then the value of veca.(vecbxxvecc) is…… .

If vecr.veca=vecr.vecb=vecr.vecc=0 " where "veca,vecb and vecc are non-coplanar, then

If veca,vecb and vecc are three mutually perpendicular unit vectors then (vecr.veca)veca+(vecr.vecb)vecb+(vecr.vecc)vecc= (A) ([veca vecb vecc]vecr)/2 (B) vecr (C) 2[veca vecb vecc] (D) none of these

Solve veca.vecr=x, vecb.vecr=y, vecc.vecr=z , where veca,vecb,vecc are given non coplanar vectors.

If veca, vecb, vecc are non coplanar vectors such that vecbxxvecc=veca, vecaxxvecb=vecc aned veccxxveca=vecb then (A) |veca|+|vecb|+|vecc|=3 (B) |vecb|=1 (C) |veca|=1 (D) none of these

If veca, vecb, vecc are three non-coplanar vectors, then a vector vecr satisfying vecr.veca=vecr.vecb=vecr.vecc=1 , is

Assertion: If vecr.veca=0, vecr.vecb=0, vecr.vecc=0 for some non zero vector vecr e then veca,vecb,vecc are coplanar vectors. Reason : If veca,vecb,vecc are coplanar then veca+vecb+vecc=0 (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

If veca,vecb and vecc are three non-coplanar vectors, then the vector equation vecr-(1-p-q)veca+pvecb+qvecc represents a

If veca is perpendicular to vecb and vecr is a non-zero vector such that pvecr + (vecr.vecb)veca=vecc , then vecr is: