Home
Class 12
MATHS
Let veca=hati+hatj and vecb=2hati-hatk. ...

Let `veca=hati+hatj and vecb=2hati-hatk.` Then the point of intersection of the lines `vecrxxveca=vecbxxveca and vecrxxvecb=vecaxxvecb` is (A) `(3,-1,10` (B) `(3,1,-1)` (C) `(-3,1,1)` (D) `(-3,-1,-10`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let veca = hati +hatj and vecb = 2hati - hatk then the point of intersection of the lines vecrxxveca = vecbxx veca and vecrxx vecb = vecaxx vecb is

Let veca=hatj-hatk and vecc=hati-hatj-hatk . Then the vector vecb satisfying vecaxxvecb+vecc=vec0 and veca.vecb=3 is

If veca=2hati-3hatj-hatk and vecb=hati+4hatj-2hatk , then vecaxxvecb is

Let vec a=hati+2hatj-hatk , vec b=hati-hatj , vec c=hati-hatj-hatk ,and vecrxxveca = vecc xx veca , vecr*vecb=0 . Find vecr*veca

The point of intersection of vecrxxveca=vecbxxveca and vecrxxvecb=vecaxxvecb where veca=hati+hatj and vecb=2hati-hatk is (A) 3hati+hatj-hatk (B) 3hati-hatk (C) 3hati+2hatj+hatk (D) none of these

If vecA=2hati+3hatj-hatk and vecB=-hati+3hatj+4hatk then projection of vecA on vecB will be

If veca=hati+hatj+hatk, veca.vecb=1 and vecaxxvecb=hatj-hatk then vecb

if veca=hati-hatj-3hatk, vecb=4hati-3hatj+hatk and vecc=2hati+hatj+2hatk, verify that vecaxx(vecb+vecc)=vecaxxvecb+vecaxxvecc