Home
Class 12
MATHS
If the non zero vectors veca and vecb ar...

If the non zero vectors `veca and vecb` are perpendicular to each other then the solution the equation `vecrxxveca=vecb` is (A) `vecralphavecb- 1/(|vecb|^2)(vecaxxvecb)` (B) `vecralphavecb+ 1/(|veca|^2)(vecaxxvecb)` (C) `vecralphavecb+ 1/(|vecb|^2)(vecaxxvecb)` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If the non zero vectors veca and vecb are perpendicular to each other, then the solution of the equation vecr xx veca=vecb is given by

If veca is perpendicular to vecb then the vector vecaxx[vecaxx{vecaxx(vecaxxvecb)}] is equla (A) |veca|^2vecb (B) |veca|vecb (C) |veca|^3vecb (D) |veca|^4vecb

The vector (veca-vecb)xx(veca+vecb) is equal to (A) 1/2 (vecaxxvecb) (B) vecaxxvecb (C) 2(veca+vecb) (D) 2(vecaxxvecb)

If for two vector vecA and vecB , vecAxxvecB=0 then

If veca vecb be any two mutually perpendiculr vectors and vecalpha be any vector then |vecaxxvecb|^2 ((veca.vecalpha)veca)/(veca|^2)+|vecaxvecb|^2 ((vecb.vecalpha)vecb)/(|vecb|^2)-|vecaxxvecb|^2vecalpha= (A) |(veca.vecb)vecalpha|(vecaxxvecb) (B) [veca vecb vecalpha](vecbxxveca) (C) [veca vecb vecalpha](vecaxxvecb) (D) none of these

If vecc=vecaxxvecb and vecb=veccxxveca then (A) veca.vecb=vecc^2 (B) vecc.veca.=vecb^2 (C) veca_|_vecb (D) veca||vecbxxvecc

Prove that: (2veca-vecb)xx (veca+2vecb)=5vecaxxvecb .

Show that, (veca-vecb)xx(veca+vecb) = 2(vecaxxvecb) .

veca*vecb=abs(vecaxxvecb) then abs(veca-vecb) is

If vertices of /_\ABC are A(veca), B(vecb) and C(vecc) then length of perpendicular from C to AB is (A) (|vecbxxvecc+veccxxveca+vecaxxvecb|)/(|veca-vecb|) (B) (|vecbxxvecc+veccxxveca+vecaxxvecb|)/(|veca+vecb|) (C) (|vecbxxvecc|+|veccxxveca|+|vecaxxvecb|)/(|veca-vecb|) (D) none of these