Home
Class 12
MATHS
If |vecc|=2 , |veca|=|vecb|=1 and vecaxx...

If `|vecc|=2 , |veca|=|vecb|=1 and vecaxx(vecaxxvecc)+vecb=vec0` then the acute angle between `veca and vecc` is (A) `pi/6` (B) `pi/4` (C) `pi/3` (D) `(2pi)/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

If |veca.vecb|=sqrt(3)|vecaxxvecb| then the angle between veca and vecb is (A) pi/6 (B) pi/4 (C) pi/3 (D) pi/2

If veca+vecb+vecc=0, |veca|=3, |vecb|=5, |vecc|=7, then angle between veca and vecb is (A) pi/6 (B) (2pi)/3 (C) (5pi)/3 (D) pi/3

If veca,vecb,vecc are unit vectors such that veca is perpendicular to vecb and vecc and |veca+vecb+vecc|=1 then the angle between vecb and vecc is (A) pi/2 (B) pi (C) 0 (D) (2pi)/3

Let |veca|=3, |vecb|=4, |vecc|=5 and vecaxx(vecaxxvecc)+4vecb=0 , then the value of |veca xx vecc|^(2) equals to

If veca,vecb,vecc are three coplanar unit vector such that vecaxx(vecbxxvecc)=-vecb/2 then the angle betweeen vecb and vecc can be (A) pi/2 (B) pi/6 (C) pi (D) (2pi)/3

If veca,vecb and vecc are non coplanar and unit vectors such that vecaxx(vecbxxvecc)=(vecb+vecc)/sqrt(2) then the angle between vea and vecb is (A) (3pi)/4 (B) pi/4 (C) pi/2 (D) pi

Let veca,vecb and vecc be three unit vectors such that vecaxx(vecbxxvecc)=sqrt(3)/2(vecb+vecc) . If vecb is not parallel to vecc then the angle between veca and vecb is (A) (5pi)/6 (B) (3pi)/4 (C) pi/2 (D) (2pi)/3

The non zero vectors veca,vecb, and vecc are related byi veca=8vecb nd vecc=-7vecb. Then the angle between veca and vecc is (A) pi (B) 0 (C) pi/4 (D) pi/2

If vecA+ vecB = vecC and A+B+C=0 , then the angle between vecA and vecB is :

If veca +vecb +vecc =vec0, |veca| =3 , |vecb|=5 and |vecc| =7 , then the angle between veca and vecb is