Home
Class 12
MATHS
If veca,vecb and vecc are non coplanar a...

If `veca,vecb and vecc` are non coplanar and unit vectors such that `vecaxx(vecbxxvecc)=(vecb+vecc)/sqrt(2)` then the angle between `vea and vecb` is (A) `(3pi)/4` (B) `pi/4` (C) `pi/2` (D) `pi`

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are non-coplanar unit vectors such that vecaxx(vecbxxvecc)=(vecb+vecc)/(sqrt(2)) then the angle between veca and vecb is

If |veca.vecb|=sqrt(3)|vecaxxvecb| then the angle between veca and vecb is (A) pi/6 (B) pi/4 (C) pi/3 (D) pi/2

If veca,vecb,vecc are three coplanar unit vector such that vecaxx(vecbxxvecc)=-vecb/2 then the angle betweeen vecb and vecc can be (A) pi/2 (B) pi/6 (C) pi (D) (2pi)/3

Let veca,vecb and vecc be three unit vectors such that vecaxx(vecbxxvecc)=sqrt(3)/2(vecb+vecc) . If vecb is not parallel to vecc then the angle between veca and vecb is (A) (5pi)/6 (B) (3pi)/4 (C) pi/2 (D) (2pi)/3

If |vecc|=2 , |veca|=|vecb|=1 and vecaxx(vecaxxvecc)+vecb=vec0 then the acute angle between veca and vecc is (A) pi/6 (B) pi/4 (C) pi/3 (D) (2pi)/3

If veca+vecb+vecc=0, |veca|=3, |vecb|=5, |vecc|=7, then angle between veca and vecb is (A) pi/6 (B) (2pi)/3 (C) (5pi)/3 (D) pi/3

Let veca, vecb and vecc be three unit vectors such that vecaxx(vecbxxvecc)=(sqrt(3))/2(vecb+vecc) . If vecb is not parallel to vecc , then the angle between veca and vecb is

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,10vecc-23veca)]

If veca,vecb,vecc are unit vectors such that veca is perpendicular to vecb and vecc and |veca+vecb+vecc|=1 then the angle between vecb and vecc is (A) pi/2 (B) pi (C) 0 (D) (2pi)/3