Home
Class 12
MATHS
The equation of the line of intersetion ...

The equation of the line of intersetion of the planes `vecr.vecn=q,vecr.vecn\'=q\'` and pasing through the point `veca` is (A) `vecr=veca+lamda(vecn-vecn\')` (B) `vecr=veca+lamda(vecnxxvecn\')` (C) `vecr=veca+lamda(vecn+vecn\')` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The equation of the line throgh the point veca parallel to the plane vecr.vecn=q and perpendicular to the line vecr=vecb+tvecc is (A) vecr=veca+lamda (vecnxxvecc) (B) (vecr-veca)xx(vecnxxvecc)=0 (C) vecr=vecb+lamda(vecnxxvecc) (D) none of these

Distance of point P(vecP) from the plane vecr.vecn=0 is

Solved lamdavecr+(veca.vecr)vecb=vecc,lamda!=0

The equation of the plane containing the line vecr= veca + k vecb and perpendicular to the plane vecr . vecn =q is :

Find the projection of the line vecr=veca+tvecb on the plane given by vecr.vecn=q .

A straighat line vecr=veca+lamdavecb meets the plane vecr.vecn=p in the point whose position vector is (A) veca+((veca.hatn)/(vecb.hatn))vecb (B) veca+((p-veca.hatn)/(vecb.hatn))vecb (C) veca-((veca.hatn)/(vecb.hatn))vecb (D) none of these

The equation of the plane contaiing the lines vecr=veca_(1)+lamda vecb and vecr=veca_(2)+muvecb is

Distance of the point P(vecc) from the line vecr=veca+lamdavecb is