Home
Class 12
MATHS
The reflection of the point veca in the ...

The reflection of the point `veca` in the plane `vecr.vecn=q` is (A) `veca+ (vecq-veca.vecn)/(|vecn|` (B) `veca+2((vecq-veca.vecn)/(|vecn|^2))vecn` (C) `veca+(2(vecq+veca.vecn))/(|vecn|)` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Distance of point P(vecP) from the plane vecr.vecn=0 is

A straighat line vecr=veca+lamdavecb meets the plane vecr.vecn=p in the point whose position vector is (A) veca+((veca.hatn)/(vecb.hatn))vecb (B) veca+((p-veca.hatn)/(vecb.hatn))vecb (C) veca-((veca.hatn)/(vecb.hatn))vecb (D) none of these

The distance of the point A(veca) from the line vecr=vecb+tvecc is (A) |(veca-vecb)xxvecc| (B) (|(veca-vecb)xxvecc|)/(|(veca-vecb)|) (C) (|(veca-vecb)xxvecc|)/(|vecc|) (D) (|vecaxx(vecb-vecc)|)/(|veca|)

The equation of the line of intersetion of the planes vecr.vecn=q,vecr.vecn\'=q\' and pasing through the point veca is (A) vecr=veca+lamda(vecn-vecn\') (B) vecr=veca+lamda(vecnxxvecn\') (C) vecr=veca+lamda(vecn+vecn\') (D) none of these

The equation of the line throgh the point veca parallel to the plane vecr.vecn=q and perpendicular to the line vecr=vecb+tvecc is (A) vecr=veca+lamda (vecnxxvecc) (B) (vecr-veca)xx(vecnxxvecc)=0 (C) vecr=vecb+lamda(vecnxxvecc) (D) none of these

If veca.vecb=beta and vecaxxvecb=vecc, then vecb is (A) (betaveca-vecaxxvecc)/(|veca|^2) (B) (betaveca+vecaxxvecc)/(|veca|^2) (C) (betavecc-vecaxxvecc)/(|veca|^2) (D) (betavecc+vecaxxvecc)/(|veca|^2)

For two vectors veca and vecb,veca,vecb=|veca||vecb| then (A) veca||vecb (B) veca_|_vecb (C) veca=vecb (D) none of these

If veca,vecb and vecc are three mutually perpendicular unit vectors then (vecr.veca)veca+(vecr.vecb)vecb+(vecr.vecc)vecc= (A) ([veca vecb vecc]vecr)/2 (B) vecr (C) 2[veca vecb vecc] (D) none of these