Home
Class 12
MATHS
The plane contaning the two straight lin...

The plane contaning the two straight lines `vecr=veca+lamda vecb and vecr=vecb+muveca` is (A) `[vecr vecas vecb]=0` (B) `[vecr veca veca xxvecb]=0` (C) `[vecr vecb vecaxxvecb]=0` (D) `[vecr veca+vecb vecaxxvecb]=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

The equation of the plane contaiing the lines vecr=veca_(1)+lamda vecb and vecr=veca_(2)+muvecb is

The plane vecr cdot vecn = q will contain the line vecr = veca + lambda vecb if

If vecasxxvecb=0 and veca.vecb=0 then (A) veca_|_vecb (B) veca||vecb (C) veca=0 and vecb=0 (D) veca=0 or vecb=0

Lines vecr = veca_(1) + lambda vecb_(1) and vecr = veca_(2) + svecb_(2) will lie in a Plane if

If veca,vecb and vecc are non coplnar and non zero vectors and vecr is any vector in space then [vecc vecr vecb]veca+pveca vecr vecc] vecb+[vecb vecr veca]c= (A) [veca vecb vecc] (B) [veca vecb vecc]vecr (C) vecr/([veca vecb vecc]) (D) vecr.(veca+vecb+vecc)

The equation of the plane containing the line vecr= veca + k vecb and perpendicular to the plane vecr . vecn =q is :

Show that the plane through the points veca,vecb,vecc has the equation [vecr vecb vecc]+[vecr vecc veca]+[vecr veca vecb]=[veca vecb vecc]

The equation of the line throgh the point veca parallel to the plane vecr.vecn=q and perpendicular to the line vecr=vecb+tvecc is (A) vecr=veca+lamda (vecnxxvecc) (B) (vecr-veca)xx(vecnxxvecc)=0 (C) vecr=vecb+lamda(vecnxxvecc) (D) none of these

Lines vecr = veca _(1)+veca _(2)and vecr = veca _(2)+ vecb _(2) lie in a plane if :

The line vecr= veca + lambda vecb will not meet the plane vecr cdot n =q, if