Home
Class 12
MATHS
If the area of triangle ABC having verti...

If the area of triangle ABC having vertices `A(veca),B(vecb),C(vecc)` is `t|vecaxxvecb+vecbxxvecc+vecc+veccxxveca| then t[=` (A) 2 (B) `1/2` (C) 1 (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If vecr.veca=vecr.vecb=vecr.vecc=1/2 for some non zero vector vecr and veca,vecb,vecc are non coplanar, then the area of the triangle whose vertices are A(veca),B(vecb) and C(vecc0 is (A) |[veca vecb vecc]| (B) |vecr| (C) |[veca vecb vecr]vecr| (D) none of these

If veca+vecb+vecc=0 , prove that (vecaxxvecb)=(vecbxxvecc)=(veccxxveca)

Express veca,vecb,vecc in terms of vecbxxvecc, veccxxveca and vecaxxvecb .

If [vecaxxvecb vecbxxvecc veccxxveca]=lamda [veca vecb vecc]^2 then lamda is equal to (A) 1 (B) 2 (C) 3 (D) 0

Prove that: [vecaxxvecb ,vecbxxvecc ,veccxxveca] = [veca vecb vecc]^2

If veca, vecb, vecc are three vectors, then [(vecaxxvecb, vecbxxvecc, veccxxveca)]=

Prove that veca,vecb,vecc are coplanar iff vecaxxvecb,vecbxxvecc,veccxxveca are coplanar

If 4veca+5vecb+9vecc=0 " then " (vecaxxvecb)xx[(vecbxxvecc)xx(veccxxveca)] is equal to

If 4veca+5vecb+9vecc=vec0 then (vecaxxvecb).{(vecbxxvecc)xx(veccxxveca)} is equal to

If veca, vecb, vecc are non coplanar vectors such that vecbxxvecc=veca, vecaxxvecb=vecc aned veccxxveca=vecb then (A) |veca|+|vecb|+|vecc|=3 (B) |vecb|=1 (C) |veca|=1 (D) none of these