Home
Class 12
MATHS
If vec|a|=3,|vecb|=4,and |veca=vecb|=5, ...

If `vec|a|=3,|vecb|=4,and |veca=vecb|=5, then |veca-vecb|` is equal to (A) 6 (B) 5 (C) 4 (D) 3

Promotional Banner

Similar Questions

Explore conceptually related problems

If |veca|=2,|vecb|=3 and |2veca-vecb|=5, then |2veca+vecb| equals: (A) 17 (B) 7 (C) 5 (D) 1

If |veca|=|vecb| , then (veca+vecb).(veca-vecb) is equal to

If |veca|=5 , |veca-vecb| = 8 and |veca +vecb|=10 then find |vecb|

If veca,vecb,vecc are three unit vectors such that veca+vecb+vecc=0, then veca.vecb+vecb.vecc+vecc.veca is equal to (A) -1 (B) 3 (C) 0 (D) -3/2

Statement 1 : If |veca | = 3, |vecb| = 4 and |veca + vecb| = 5 , then |veca - vecb|=5 . Statement 2 : The length of the diagonals of a rectangle is the same.

If veca,vecb,vecc are perpendicular to vecb+vecc,vecc+veca and veca+vecb respectively and if |veca+vecb|=6,|vecb+vecc|=8 and |vecc+veca|=10,then |veca+vecb+vecc| (A) 5sqrt(2) (B) 50 (C) 10sqrt(2) (D) 10

If veca+vecb+vecc=0, |veca|=3, |vecb|=5, |vecc|=7, then angle between veca and vecb is (A) pi/6 (B) (2pi)/3 (C) (5pi)/3 (D) pi/3

Let veca,vecb and vecc are vectors such that |veca|=3,|vecb|=4and |vecc|=5, and (veca+vecb) is perpendicular to vecc,(vecb+vecc) is perpendiculatr to veca and (vecc+veca) is perpendicular to vecb . Then find the value of |veca+vecb+vecc| .

If veca is perpendicuar to vecb and vecc |veca|=2, |vecb|=3,|vecc|=4 and the angle between vecb and vecc is (2pi)/3, then [veca vecb vecc] is equal to (A) 4sqrt(3) (B) 6sqrt(3) (C) 12sqrt(3) (D) 18sqrt(3)

Consider three vectors veca, vecb and vecc . Vectors veca and vecb are unit vectors having an angle theta between them For vector veca,|veca|^2=veca.veca If veca_|_vecb and veca_|_vecc then veca||vecbxxvecc If veca||vecb, then veca=tvecb Now answer the following question: If |vecc|=4, theta cos^-1(1/4) and vecc-2vecb=tvecas, then t= (A) 3,-4 (B) -3,4 (C) 3,4 (D) -3,-4