Home
Class 12
MATHS
The distance between the line vecr=2hati...

The distance between the line `vecr=2hati-2hatj+3hat+lamda(veci-vecj+4veck)` and the plane `vecr.(veci+5vecj+veck)=5` is ` (A) 10/3sqrt(3)` (B) `10/9` (C) `10/3` (D) `3/10`

Promotional Banner

Similar Questions

Explore conceptually related problems

The distance between the line vecr=2hati-2hatj+3hatk+lamda(hati-hatj+4hatk) and the plane vecr.(hati+5hatj+hatk)=5 is

The distance of the line vecr=2hati-2hatj+3hatk +lamda(hati-2hatj+4hatk) and the plane vecr.(hati+5hatj+hatk)=5 is (A) 10/3 (B) (1,-2) (C) 10/(3sqrt(3)) (D) 10/9

Angle between the line vecr=(2hati-hatj+hatk)+lamda(-hati+hatj+hatk) and the plane vecr.(3hati+2hatj-hatk)=4 is

The perpendicular distance between the line vecr = 2hati-2hatj+3hatk+lambda(hati-hatj+4hatk) and the plane vecr.(hati|5hatj|hatk) = 5 is :

Find the angle between the line vecr=(veci+2vecj-veck)+lamda(veci-vecj+veck) and the normal to the plane vecr*(2veci-vecj+veck)=4 .

The angle between the line vecr=(hati+2hatj+3hatk)=lamda(2hati+3hatj+4hatk) and the plane vecr.(hati+2hatj-2hatk)=3 is (A) 0^0 (B) 60^0 (C) 30^0 (D) 90^0

Find the cosine of the angel between the planes vecr.(2veci-3vecj-6veck)=7 and vecr.(6veci+2vecj-9veck)=5

The shortest distance between the lines vecr=(hati-hatj)+lamda(hati+2hatj-3hatk) and vecr=(hati-hatj+2hatk)+mu(2hati+4hatj-5hatk) is

The acute angle between the lines vecr=(4hati-hatj)+5(2hati+hatj-3hatk) and vecr=(hati-hatj+2hatk)+t(hati-3hatj+2hatk) is (A) (3pi)/2 (B) pi/3 (C) (2pi)/3 (D) pi/6