Home
Class 12
MATHS
If veca,vecb, vecc are unit coplanar vec...

If `veca,vecb, vecc` are unit coplanar vectors then the scalar triple product `[2veca-vecb 2vecb-c vec2c-veca]` is equal to (A) `0` (B) `1` (C) `-sqrt(3)` (D) `sqrt(3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca, vecb and vecc are unit coplanar vectors, then the scalar triple product [(2veca-vecb, 2vecb-vecc, 2vecc-veca)]=

If veca, vecb and vecc are unit coplanar vectors , then the scalar triple porduct [2 veca -vecb" " 2vecb - vecc " "2vecc-veca] is

If veca,vecb,vecc are coplanar vectors then find value of [veca-vecb+vec2c vecb-vec c+2veca veca+2vecb-vec c]

Let veca,vecb and vecc be three vectors. Then scalar triple product [veca vecb vecc] is equal to

If veca,vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,12vecc-23vecb)] is equal to

If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,10vecc-23veca)]

If veca,vecb,vecc are unit coplanar vectors than [2veca-vecb,2vecb-vecc, 2vecc-veca]= (A) 1 (B) 0 (C) -sqrt(3) (D) sqrt(3)

If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2vecb+vecc, vecb-2vecc+veca, vecc-2veca+vecb)]=

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to