Home
Class 12
MATHS
Let vecV=2hati+hatj-hatk and vecW=hati+3...

Let `vecV=2hati+hatj-hatk and vecW=hati+3hatk. If vecU` is a unit vector then the maximum value of the scalar triple product `[vecU vecV vecW]` is (A) -1 (B) `sqrt(10)+sqrt(6)` (C) `sqrt(59)` (D) `sqrt(60)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let vecV=2hati+hatj-hatk and vecW=hati+3hatk . It vecU is a unit vector, then the maximum value of the scalar triple product [(vecU, vecV, vecW)] is

Let vec V=2hat i+hat j-hat k and vec W=hat i+3hat k. If vec U is a unit vector,then the maximum value of the scalar triple product [UVW] is -1 b.sqrt(10)+sqrt(6) c.sqrt(59)d.sqrt(60)

Let vecu=2hati-hatj+hatk, vecv=-3hatj+2hatk be vectors and vecw be a unit vector in the xy-plane. Then the maximum possible value of |(vecu xx vecv)|.|vecw| is

The scalar triple product of the vectors 2hati,3hatj and -5hatk is

Let vecu=hai+hatj,vecv=hati-hatj and vecw=hati+2hatj+3hatk . If hatn isa unit vector such that vecu.hatn=0 and vecv.hatn=0, |vecw.hatn| is equal to (A) 0 (B) 1 (C) 2 (D) 3

Let vec(U)=hati,hatj,vecV=hati-hatjand vec(W)=3hati+5hatj+3hatk. If hat(n) =0 then |vecW.hatn| is equal to

Let veca=hati-hatj, vecb=hatj-hatk, vecc=hatk-hati. If hatd is a unit vector such that veca.hatd=0=[vecb, vecc, vecd] then hatd equals (A) +-(hati+hatj-2hatk)/sqrt(6) (B) +-(hati+hatj-hatk)/sqrt(3) (C) +-(hati+hatj+hatk)/sqrt(3) (D) +-hatk

Let veca=hati + 2hatj +hatk, vecb=hati - hatj +hatk and vecc= hati+hatj-hatk A vector in the plane of veca and vecb whose projections on vecc is 1//sqrt3 is

Let vecu = 2hati - hatj + hatk, vecv = -3hatj + 2hatk be vectors in R^(3) and vecw be a unit vector in the xy-plane. Then the maximum possible value of |(vecu xx vecv).vecw| is-