Home
Class 12
MATHS
If veca,vecb,vecc are unit coplanar vect...

If `veca,vecb,vecc` are unit coplanar vectors than `[2veca-vecb,2vecb-vecc, 2vecc-veca]=` (A) 1 (B) 0 (C) `-sqrt(3)` (D) `sqrt(3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,10vecc-23veca)]

If veca,vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,12vecc-23vecb)] is equal to

If veca,vecb,vecc are non coplanar vectors then ([veca+2vecb vecb+2cvecc vecc+2veca])/([veca vecb vecc])= (A) 3 (B) 9 (C) 8 (D) 6

If veca,vecb,vecc are coplanar, show that veca+vecb, vecb+vecc, vecc+veca are also coplanar.

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2vecb+vecc, vecb-2vecc+veca, vecc-2veca+vecb)]=

If veca, vecb and vecc are unit coplanar vectors, then the scalar triple product [(2veca-vecb, 2vecb-vecc, 2vecc-veca)]=

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If veca,vecb,vecc are unit vectors such that veca+vecb+vecc=0 then veca.vecb+vecb.vecc+vecc.veca= (A) 3/2 (B) -3/2 (C) 2/3 (D) 1/2

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then: