Home
Class 12
MATHS
If vecu,vecv and vecw are three non copl...

If `vecu,vecv and vecw` are three non coplanar vectors then `(vecu+vecv-vecw).(vecu-vecc)xx(vecv-vecw)` equals (A) `vecu.vecvxxvecw` (B) `vecu.vecwxxvecv` (C) `3vecu.vecuxxvecw` (D) 0

Promotional Banner

Similar Questions

Explore conceptually related problems

If vecu, vecv, vecw are three non-coplanar vectors, the (vecu+vecv-vecw).(vecu-vecv)xx(vecv-vecw) equals

If vecu, vecv, and vecw are three non-caplanar vectors, then prove that (vecu+vecv-vecw).(vecu-vecv)xx(vecv-vecw)=vecu.vecvxxvecw

If vecA,vecB and vecC are three non coplanar then (vecA+vecB+vecC).{(vecA+vecB)xx(vecA+vecC)} equals: (A) 0 (B) [vecA, vecB, vecC] (C) 2[vecA, vecB,vecC] (D) -[vecA,vecB,vecC]

If veca and vecb are two non collinear vectors and vecu=veca-(veca.vecb)vecb and vecv=vecaxxvecb then |vecv| is (A) |vecu| (B) |vecu|+|vecu.vecb| (C) |vecu|+|vecu.veca| (D) none of these

If vec a,vec c,vec d are non-coplanar vectors,then vec d*{vec a xx[vec b xx(vec c xxvec d)]} is equal to

If vecu,vecv and vecw are vectors such that vecu+vecv+vecw=vec0 then [vecu+vecv vecv+vecw vecw+vecu])= (A) 1 (B) [vecu vecv vecw] (C) 0 (D) -1

Let vecu, vecv, vecw be three unit vectors such that vecu+vecv+vecw=veca,veca.vecu=3/2, veca.vecv=7/4 |veca|=2, then (A) vecu.vecv=3/2 (B) vecu.vecw=0 (C) vecu.vecw=-1/4 (D) none of these

If vecu, vecv, vecw are three vectors such that [vecu vecv vecw]=1 , then 3[vecu vecv vecw]-[vecv vecw vecu]-2[vecw vecv vecu]=

Let vecu, vecv and vecw be three unit vectors such that vecu + vecv + vecw = veca, vecuxx (vecv xx vecw)= vecb, (vecu xx vecv) xx vecw= vecc, vec a.vecu=3//2, veca.vecv=7//4 and |veca|=2 Vector vecu is