Home
Class 12
MATHS
If vecV=x(vecaxxvecb)+y(vecbxxvecc)+z(ve...

If `vecV=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and vecV.(veca+vecb+vecc)=x+y+z.` The valueof `[veca,vecb, vecc] if x+y+z!=0` ils (A) 0 (B) 1 (C) -1 (D) 2

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec(alpha)=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and [veca vecb vecc]=1/8 , then x+y+z=

If vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) such that x+y+z!=0 and vecr.(veca+vecb+vecc)=x+y+z, then [[veca,vecb, vecc]]=

If vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(vecc+veca) Such that x+y+z!=0 and vecr.(veca+vecb+vecc)=x+y+z , then [veca vecb vecc]=

If vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and [veca vecb vecc]=(1)/(3) , then x+y+z is equal to

If vecax(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0 , and [(veca,vecb,vecc)]=

Prove that: [vecaxxvecb ,vecbxxvecc ,veccxxveca] = [veca vecb vecc]^2

If [(vecaxxvecb, vecbxxvecc, veccxxveca)]=lamda[(veca, vecb, vecc)]^(2) , then lamda is equal to

Express veca,vecb,vecc in terms of vecbxxvecc, veccxxveca and vecaxxvecb .