Home
Class 12
MATHS
If vecA,vecB and vecC are three non copl...

If `vecA,vecB and vecC` are three non coplanar then `(vecA+vecB+vecC).{(vecA+vecB)xx(vecA+vecC)}` equals: (A) 0 (B) `[vecA, vecB, vecC]` (C) `2[vecA, vecB,vecC]` (D) `-[vecA,vecB,vecC]`

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If veca, vecb and vecc 1 are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb and vecc 1 are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

The scalar vecA.(vecB+vecC)xx(vecA+vecB+vecC) equals (A) 0 (B) [vecA vecB vecC]+[vecB vecC vecA] (C) [vecA vecB vecC] (D) none of these

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If vecA,vecB,vecC are non-coplanar vectors than ( vecA . vecB xx vecC )/(vecCxxvecA.vecB)+(vecB. vecA xx vecC)/( vecC. vecA xx vecB) is equal to

If veca,vecb,vecc are non coplanar vectors then ([veca+2vecb vecb+2cvecc vecc+2veca])/([veca vecb vecc])= (A) 3 (B) 9 (C) 8 (D) 6

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca