Home
Class 12
MATHS
If vecAxx(vecBxxvecC)=vecBxx(vecCxxvecA)...

If `vecAxx(vecBxxvecC)=vecBxx(vecCxxvecA) and [vecA vecB vecC]!=0 then vecAxx(vecBxxvecC)` is equal to (A) `0` (B) `vecAxxvecB` (C) `vecBxxvecC` (D) `vecCxxvecA`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vecaxx(vecbxxvecc)=vecbxx(veccxxveca) and [(vec, vecb, vecc)]!=0 then vecaxx(vecbxxvecc) is equal to

If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) then

(vecbxxvecc)xx(veccxxveca)=

If vecax(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0 , and [(veca,vecb,vecc)]=

If vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and [veca vecb vecc]=(1)/(3) , then x+y+z is equal to

Prove that (vecbxxvecc)xx(veccxxveca)=[veca vecb vecc]vecc

Prove that (vecbxxvecc)xx(veccxxveca)=[veca vecb vecc]vecc

If vec(alpha)=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and [veca vecb vecc]=1/8 , then x+y+z=

[((vecaxxvecb)xx(vecbxxvecc),(vecbxxvecc)xx(veccxxveca),(veccxxveca)xx(vecaxxvecb))] equal to

Prove that vecaxx(vecbxxvecc)+vecbxx(veccxxveca)+veccxx(vecaxxvecb)=vec0