Home
Class 12
MATHS
If hata=hati+2hatj+3hatk, hatb=hatixx(ve...

If `hata=hati+2hatj+3hatk, hatb=hatixx(vecaxxhati)+hatjxx(vecaxxhatj)+hatkxx(vedaxxhatk)` then length of `vecb` is equal to (A) `sqrt(12)` (B) `2sqrt(12)` (C) `2sqrt(14)` (D) `3sqrt(12)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a=hati+2hatj+3hatk and b=hatixx(axxhati)+hatjxx(axx hatj)+hatk+(a xx hatk) , then length of b is equal to

sqrt(5sqrt(2)-2sqrt(12))=

(12)/( 3+ sqrt(5 ) + 2sqrt(2)) is equal to

If vec(a).hati=4" then"(vecaxxhatj).(2hatj-3hatk) is equal to

The vector vec(AB)=3hati+4hatk and vec(AC)=5hati-2hatj+4hatk are sides of a triangle ABC. The length of the median through A is (A) sqrt(18) (B) sqrt(72) (C) sqrt(33) (D) sqrt(288)

If the vectors vec(AB)=3hati+4hatk and vec(AC)=5hati-2hatj+4hatk are the sides of a triangle ABC, then the length of the median through A is (A) sqrt(18) (B) sqrt(72) (C) sqrt(33) (D) sqrt(45)

(2sqrt(27)-sqrt(75)+sqrt(12)) is equal to sqrt(3)(b)2sqrt(3) (c) 3sqrt(3)(d)4sqrt(3)

4sqrt(3)-7sqrt(12)+2sqrt(75)=