Home
Class 12
MATHS
Given (vecaxxvecb)xx(veccxvecd)=5vecc+6v...

Given `(vecaxxvecb)xx(veccxvecd)=5vecc+6vecd` then the value of `veca.vecbxx(veca+vecc+2vecd)` is (A) 7 (B) 16 (C) -1 (D) 4

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: [(vecaxxvecb)xx(vecaxxvecc)].vecd=[veca vecb vecc](veca.vecd)

If veca xx (vecbxx vecc)= (veca xx vecb)xxvecc then

Given that veca,vecc,vecd are coplanar the value of (veca + vecd).{veca xx [vecb xx (vecc xx veca)]} is:

For three vectors veca, vecb and vecc , If |veca|=2, |vecb|=1, vecaxxvecb=vecc and vecbxxvecc=veca , then the value of [(veca+vecb,vecb+vecc,vecc+veca)] is equal to

Assetion: (vecaxxvecb)xx(veccxxvecd)=[veca vecc vecd]vecb-[vecb vecc vecd]veca Reason: (vecaxxvecb)xxvecc=(veca.vecc)vecb-(vecb.vecc)veca (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

If veca, vecb, vecc, vecd are coplanar vectors, then (vecaxxvecb)xx(veccxxvecd)=

If vecax(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0 , and [(veca,vecb,vecc)]=

For vectors veca,vecb,vecc,vecd, vecaxx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc and (vecaxxvecb).(veccxxvecd)=(veca.vecc)(vecb.vecd)(veca.vecd)(vecb.vecc) Now answer the following question: {(vecaxxvecb).xxvecc}.vecd would be equal to (A) veca.(vecxx(veccxxvecd)) (B) ((vecaxxvecc)xxvecb).vecd (C) (vecaxxvecb).(vecdxxvecc) (D) none of these