Home
Class 12
MATHS
If vecaxx[vecaxx{vecaxx(vecaxxvecb)}]=|v...

If `vecaxx[vecaxx{vecaxx(vecaxxvecb)}]=|veca|^4 vecb` how are `veca and vecb` related? (A) `veca and vecb` are coplanar (B) `veca and vecb` are collinear (C) `veca` is perpendicular to `vecb` (D) `veca` is parallel to vecb but veca and vecb` are non collinear

Promotional Banner

Similar Questions

Explore conceptually related problems

If |veca+vecb|=|veca-vecb| show that veca_|_vecb .

l veca . m vecb = lm(veca . vecb) and veca . vecb = 0 then veca and vecb are perpendicular if veca and vecb are not null vector

veca*vecb=abs(vecaxxvecb) then abs(veca-vecb) is

If vecasxxvecb=0 and veca.vecb=0 then (A) veca_|_vecb (B) veca||vecb (C) veca=0 and vecb=0 (D) veca=0 or vecb=0

If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) where veca, vecb and vecc are any three vectors such that veca.vecb!=0, vecb. vecc!=0 then veca and vecc are

Show that |veca|vecb+|vecb|veca is perpendicular to |veca|vecb-|vecb|veca for any two non zero vectors veca and vecb .

Prove that: vecaxx[vecbxx(veccxxveca)]=(veca.vecb)(vecaxxvecc)

If the vectors veca and vecb are mutually perpendicular, then vecaxx{vecaxx{vecaxx(vecaxxvecb)}} is equal to

If veca , vecb are two vectors such that | (veca+vecb)=|veca| then prove that 2 veca + vecb is perpendicular to vecb.