Home
Class 12
MATHS
If (vcaxxvecb)xvecc=vecaxx(vecbxxvecc), ...

If `(vcaxxvecb)xvecc=vecaxx(vecbxxvecc), where veca,vecb,vecc` are any three vectors such that `veca.vecb!=0,vecb.vecc!=0 then veca and vecc` are (A) inclined at an angle `pi/3` to each other (B) inclined at an angle of `pi/6` to each other (C) perpendicular (D) parallel

Promotional Banner

Similar Questions

Explore conceptually related problems

If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) where veca, vecb and vecc are any three vectors such that veca.vecb!=0, vecb. vecc!=0 then veca and vecc are

If (veca xx vecb) xx vecc = veca xx (vecb xx vecc) where veca, vecb and vecc are any three vectors such that veca.vecb =0, vecb.vecc=0 then veca and vecc are:

If (veca xx vecb) xx vecc = vec a xx (vecb xx vecc) , where veca, vecb and vecc are any three vectors such that veca.vecb ne 0, vecb.vecc ne 0 , then veca and vecc are:

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(veca-vecb)=vecc=0 then (vecaxxvecb)xxvecc is

If veca,vecb,vecc are three vectors such that |veca|=2,|vecb|=4,|vecc|=4,vecb.vecc=0,vecb.veca=vecc.veca , then find the value of |veca+veca-vecc|

Let veca , vecb , vecc be unit vectors such that veca .vecb =0=veca.vecc . If the angle between vecb and vecc " is " pi/6 , " then " veca equals

Let vea, vecb and vecc be unit vectors such that veca.vecb=0 = veca.vecc . It the angle between vecb and vecc is pi/6 then find veca .

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)