Home
Class 12
MATHS
Unit vectors vec aa n d vec b are perpe...

Unit vectors ` vec aa n d vec b` are perpendicular, and unit vector ` vec c` is inclined at angle `theta` to both ` vec aa n d vec bdot` If ` vec c=alpha vec a+beta vec b+gamma( vec axx vec b),` then `a=beta` b. `gamma^1=1-2alpha^2` c. `gamma^2=-cos2theta` d. `beta^2=(1+cos2theta)/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Unit vectors vec aa n d vec b are perpendicular, and unit vector vec c is inclined at angle theta to both vec aa n d vec bdot If vec c=alpha vec a+beta vec b+gamma( vec axx vec b), then (a)alpha=beta (b) gamma^2=1-2alpha^2 (c) gamma^2=-cos2theta (d) beta^2=(1+cos2theta)/2

Let vec a* vec b=0,w h e r e vec aa n d vec b are unit vectors and the unit vector vec c is inclined at an angle theta to both vec aa n d vec bdot If vec c=m vec a+n vec b+p( vec axx vec b),(m ,n , p in R), then a.pi/4lt=thetalt=pi/4 b. pi/4lt=thetalt=(3pi)/4 c. 0lt=thetalt=pi/4 d. 0lt=thetalt=(3pi)/4

Let vec a be a unit vector perpendicular to unit vector vec b and vec c and if the angle between vec b and vec c be alpha, then vec b xxvec c is

Let vec a be a unit vector perpendicular to unit vector vec b and vec c and if the angle between vec b and vec c be alpha, then vec b xxvec c is

Let vec a be a unit vector perpendicular to unit vector vec b and vec c and if the angle between vec b and vec c be alpha, then vec b xxvec c is

If vec a\ a n d\ vec b are unit vectors such that vec axx vec b is also a unit vector, find the angle between vec a\ a n d\ vec bdot

If vec a,vec b,vec c are mutually perpendicular unit vectors,find |2vec a+vec b+vec c|

If vec c is a unit vector perpendicular to the vectors vec a\ a n d\ vec b write another unit vector perpendicular vec a\ a n d\ vec bdot

vec vec alpha + vec beta + vec gamma = 0, provet vec vec alphavec beta = vec betavec x gamma = vec gamma xvec alpha

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=odot