Home
Class 12
MATHS
Three points whose position vectors are ...

Three points whose position vectors are `veca,vecb,vecc` will be collinear if (A) `lamdaveca+muvecb=(lamda+mu)vecc` (B) `vecaxxvecb+vecbxxvecc+veccxxveca=0` (C) `[veca vecb vecc]=0` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: [vecaxxvecb ,vecbxxvecc ,veccxxveca] = [veca vecb vecc]^2

Show that the points whose position vectors are veca,vecb,vecc,vecd will be coplanar if [veca vecb vecc]-[veca vecb vecd]+[veca vecc vecd]-[vecb vecc vecd]=0

Prove that (vecbxxvecc)xx(veccxxveca)=[veca vecb vecc]vecc

Prove that the points A,B,C wth positon vectros veca,vecb,vecc are collinear if and only if (vecbxxvecc)+(veccxxveca)+(vecaxxvecb)=vec0

If veca,vecb,vecc be three vectors such that [veca vecb vec c]=4 then [vecaxxvecb vecbxxvecc veccxxveca] is equal to

If [(vecaxxvecb, vecbxxvecc, veccxxveca)]=lamda[(veca, vecb, vecc)]^(2) , then lamda is equal to

If veca+vecb+vecc=0 , prove that (vecaxxvecb)=(vecbxxvecc)=(veccxxveca)

If vecax(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0 , and [(veca,vecb,vecc)]=

If veca, vecb, vecc are three vectors, then [(vecaxxvecb, vecbxxvecc, veccxxveca)]=