Home
Class 12
MATHS
If vecc=vecaxxvecb and vecb=veccxxveca t...

If `vecc=vecaxxvecb` and `vecb=veccxxveca` then (A) `veca.vecb=vecc^2` (B) `vecc.veca.=vecb^2` (C) `veca_|_vecb` (D) `veca||vecbxxvecc`

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca,vecb,vecc asre three vectors such that vecaxxvecb=vecc, vecbxxvecc=veca then (A) |vecb|=1,|vecc|=|veca| (B) |vecc|=1,|veca|=|vecb| (C) |vecb|=2,|vecc|=2|veca| (D) |veca|=1,|veccb|=|vecc|

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 veca.vecb\'=veca.veca\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . [veca,vecb,vecc]-(veca\'xxvecb\')+(vecb\'xxvec\')+(vecc\'xxveca\')= (A) veca+vecb+vecc (B) veca+vecb-vecc (C) 2(veca+vecb+vecc) (D) 3(veca\'+vecb\'+vecc\')

Prove that: [vecaxxvecb ,vecbxxvecc ,veccxxveca] = [veca vecb vecc]^2

If vecd=vecaxxvecb+vecbxxvecc+veccxxveca is a on zero vector and |(vecd.vecc)(vecaxxvecb)+(vecd.veca)(vecbxxvecc)+(vecd.vecb)(veccxxveca)|=0 then (A) |veca|+|vecb|+|vecc|=|vecd| (B) |veca|=|vecb|=|vecc| (C) veca,vecb,vecc are coplanar (D) veca+vecc=vec(2b)

If vecax(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0 , and [(veca,vecb,vecc)]=

If vecaxxvecb=vecc and vecbxxvecc=veca then a. veca,vecb,vecc are orthogonal in pairs and |veca|=|vecc|,|vecb|=1 b. veca,vecb,vecc are not orthogonal to each other c. veca,vecb,vecc are orthogonal in pairs but |veca|!=|vecc| d. veca,vecb,vecc are orthogonal but |vecb|=1 OR If vecaxxvecb=vecc,vecbxxvecc=veca , then

If veca, vecb, vecc are non coplanar vectors such that vecbxxvecc=veca, vecaxxvecb=vecc aned veccxxveca=vecb then (A) |veca|+|vecb|+|vecc|=3 (B) |vecb|=1 (C) |veca|=1 (D) none of these

The vectors veca and vecb are not perpendicular and vecac and vecd are two vectors satisfying : vecbxxvecc=vecbxxvecd and veca.vecd=0. Then the vecd is equal to (A) vecc+(veca.vecc)/(veca.vecb)vecb (B) vecb+(vecb.vecc)/(veca.vecb)vecc (C) vecc-(veca.vecc)/(veca.vecb)vecb (D) vecb-(vecb.vecc)/(veca.vecb)vecc

If |veca|=1,|vecb|=2,|vecc|=3and veca+vecb+vecc=0 the show that veca.vecb+vecb.vecc+vecc.veca=- 7