Home
Class 12
MATHS
If vecxxxvedcb=veccxxvecb and vecx|veca ...

If `vecxxxvedcb=veccxxvecb and vecx_|_veca then vecx` is equal to (A) `((vecbxxvecc)vecxxveca)/(vecb.veca)` (B) `(vecbxx(vecaxxvecc)/(vecb.vecc)` (C) `(vecaxx(veccxxvecb)/(veca.vecb)` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The vectors veca and vecb are not perpendicular and vecac and vecd are two vectors satisfying : vecbxxvecc=vecbxxvecd and veca.vecd=0. Then the vecd is equal to (A) vecc+(veca.vecc)/(veca.vecb)vecb (B) vecb+(vecb.vecc)/(veca.vecb)vecc (C) vecc-(veca.vecc)/(veca.vecb)vecb (D) vecb-(vecb.vecc)/(veca.vecb)vecc

Assertion: If vecx xx vecb=veccxxvecb and vecxd_|_veca then vecx=((vecbxxvecc)xxveca)/(veca.vecb) , Reason: vecaxx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Prove that vecaxx{vecbxx(veccxxvecd)}=(vecb.vecd)(vecaxxvecc)-(vecb.vecc)(vecaxxvecd)

Prove that: vecaxx[vecbxx(veccxxveca)]=(veca.vecb)(vecaxxvecc)

For vectors veca,vecb,vecc,vecd, vecaxx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc and (vecaxxvecb).(veccxxvecd)=(veca.vecc)(vecb.vecd)(veca.vecd)(vecb.vecc) Now answer the following question: (vecaxxvecb).(vecxxvecd) is equal to (A) (vecaxxvecd).(vecbxxvecc) (B) (vecbxxveca).(veccxxvecd) (C) (vecdxxvecc).(vecbxxveca0 (D) none of these

If veca,vecb,vecc are unity vectors such that vecd=lamdaveca+muvecb+gammavecc then gamma is equal to (A) ([veca vecb vecc])/([vecb veca vecc]) (B) ([vecb vecc vecd])/([vecb vecc veca]) (C) ([vecb vecd vecc])/([veca vecb vecc]) (D) ([vecc vecb vecd])/([veca vecb vecc])

If [veca vecb vecc]=1 then value of (veca.vecbxxvecc)/(veccxxveca.vecb)+(vecb.veccxxveca)/(vecaxxvecb.vecc)+(vecc.vecaxxvecb)/(vecbxxvecc.veca) is

If vertices of /_\ABC are A(veca), B(vecb) and C(vecc) then length of perpendicular from C to AB is (A) (|vecbxxvecc+veccxxveca+vecaxxvecb|)/(|veca-vecb|) (B) (|vecbxxvecc+veccxxveca+vecaxxvecb|)/(|veca+vecb|) (C) (|vecbxxvecc|+|veccxxveca|+|vecaxxvecb|)/(|veca-vecb|) (D) none of these

If vecc=vecaxxvecb and vecb=veccxxveca then (A) veca.vecb=vecc^2 (B) vecc.veca.=vecb^2 (C) veca_|_vecb (D) veca||vecbxxvecc

For vectors veca,vecb,vecc,vecd, vecaxx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc and (vecaxxvecb).(veccxxvecd)=(veca.vecc)(vecb.vecd)(veca.vecd)(vecb.vecc) Now answer the following question: {(vecaxxvecb).xxvecc}.vecd would be equal to (A) veca.(vecxx(veccxxvecd)) (B) ((vecaxxvecc)xxvecb).vecd (C) (vecaxxvecb).(vecdxxvecc) (D) none of these