Home
Class 12
MATHS
If (vecaxxvecb)xxvecc=vecax(vecbxxvecc0 ...

If `(vecaxxvecb)xxvecc=vecax(vecbxxvecc0` then (A) `(veccxxveca)xxvecb=0` (B) `vecbxx(veccxxveca)=0` (C) `veccxx(vecaxxvecb)=0` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that vecaxx(vecbxxvecc)+vecbxx(veccxxveca)+veccxx(vecaxxvecb)=vec0

For vectors veca,vecb,vecc,vecd, vecaxx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc and (vecaxxvecb).(veccxxvecd)=(veca.vecc)(vecb.vecd)(veca.vecd)(vecb.vecc) Now answer the following question: {(vecaxxvecb).xxvecc}.vecd would be equal to (A) veca.(vecxx(veccxxvecd)) (B) ((vecaxxvecc)xxvecb).vecd (C) (vecaxxvecb).(vecdxxvecc) (D) none of these

[((vecaxxvecb)xx(vecbxxvecc),(vecbxxvecc)xx(veccxxveca),(veccxxveca)xx(vecaxxvecb))] equal to

Show that the vectors vecaxx(vecbxxvecc) ,vecbxx(veccxxveca) and veccxx(vecaxxvecb) are coplanar.

If veca+2vecb=3vecb=0, then vecaxxvecb+vecbxxvecc+veccxxveca= (A) 2(vecaxxvecb) (B) 6(vecbxxvecc) (C) 3(veccxxveca) (D) 0

For any three vectors veca, vecb, vecc the value of vecaxx(vecbxxvecc)+vecbxx(veccxxveca)+veccxx(vecaxxvecb) , is

If 4veca+5vecb+9vecc=0 " then " (vecaxxvecb)xx[(vecbxxvecc)xx(veccxxveca)] is equal to

If vecaxx(vecbxxvecc)=vecbxx(veccxxveca) and [(vec, vecb, vecc)]!=0 then vecaxx(vecbxxvecc) is equal to

If vecaxxvecb=vecaxxvec c,veca ne 0 , then

Let veca,vecb,vecc be unit such that veca+vecb+vecc=vec0 . Which one of the following is correct? (A) vecaxxvecb=vecbxxvecc=veccxxveca=vec0 (B) vecaxxvecb=vecbxxvecc=veccxxveca!=vec0 (C) vecaxxvecb=vecbxxvecc=vecxxvecc!=vec0 (D) vecaxxvecb, vecbxxvecc, veccxxveca are mutually perpendicular