Home
Class 12
MATHS
If veca and vecb are two unit vectors p...

If `veca and vecb ` are two unit vectors perpendicular to each other and `vecc=lamda_1veca+lamda_2vecb+lamda_3(vecaxxvecb)` then the following is (are) true (A) `lamda_1=veca.vecc` (B) `lamda_2=|vecbxxvecc|` (C) `lamda_3=|(vecaxxvecb)xxvecc|` (D) `lamda_1+lamda_2+lamda_3=(veca+vecb+vecaxxvecb).vecc`

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are non coplanar vectors and lamda is a real number, then [(lamda(veca+vecb), lamda^(2)vecb, lamdavecc)]=[(veca, vecb+vecc,vecb)] for

lamda_1, lamda_2, lamda_3 are the first 3 lines of balmer series. Find lamda_1//lamda_3

Solved lamdavecr+(veca.vecr)vecb=vecc,lamda!=0

If vecax(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0 , and [(veca,vecb,vecc)]=

If veca=(0,1,-1,) and vecc=(1,1,1) are given vectors then find a vector vecb satisfying vecaxxvecb+vecc=0 and veca.vecb=3

If veca,vecb,vecc are unit vectors such that veca is perpendicular to vecb and vecc and |veca+vecb+vecc|=1 then the angle between vecb and vecc is (A) pi/2 (B) pi (C) 0 (D) (2pi)/3

If vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxvecd then (A) (veca-vecd)=lamda(vecb-vecc) (B) veca+vecd=lamda(vecb+vecc) (C) (veca-vecb)=lamda(vecc+vecd) (D) none of these

Let veca and vecc be unit vectors such that |vecb|=4 and vecaxxvecb=2(vecaxxvecc) . The angle between veca and vecc is cos^(-1)(1/4) . If vecb-2vecc=lamdaveca then lamda=

The two lines vecr=veca+veclamda(vecbxxvecc) and vecr=vecb+mu(veccxxveca) intersect at a point where veclamda and mu are scalars then (A) veca,vecb,vecc are non coplanar (B) |veca|=|vecb|=|vecc| (C) veca.vecc=vecb.vecc (D) lamda(vecb xxvecc)+mu(vecc xxveca)=vecc

Given |veca|=|vecb|=1 and |veca+vecb|=sqrt(3) . If vecc be a vector such that vecc-veca-2vecb=3(vecaxxvecb) , then vecc.vecb is equal to