Home
Class 12
MATHS
If vecaxxvecb=veccxxvecd and vecaxxvecc=...

If `vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxvecd` then (A) `(veca-vecd)=lamda(vecb-vecc)` (B) `veca+vecd=lamda(vecb+vecc)` (C) `(veca-vecb)=lamda(vecc+vecd)` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If vecaxxvecb = veccxxvecd and vecaxxvecc = vecbxxvecd , show that (veca-vecd) is parallel to (vecb-vecc) .

If vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxvecd show that (veca-vecd) is parallel to (vecb-vecc) . It is given that veca!=vecd and vecb!=vecc .

If vecc=vecaxxvecb and vecb=veccxxveca then (A) veca.vecb=vecc^2 (B) vecc.veca.=vecb^2 (C) veca_|_vecb (D) veca||vecbxxvecc

Prove that: (vecaxxvecb)xx(veccxxvecd)+(vecaxxvecc)xx(vecd xx vecb)+(vecaxxvecd)xx(vecbxxvecc)=2[vecb vecc vecd] veca

For vectors veca,vecb,vecc,vecd, vecaxx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc and (vecaxxvecb).(veccxxvecd)=(veca.vecc)(vecb.vecd)(veca.vecd)(vecb.vecc) Now answer the following question: (vecaxxvecb).(vecxxvecd) is equal to (A) (vecaxxvecd).(vecbxxvecc) (B) (vecbxxveca).(veccxxvecd) (C) (vecdxxvecc).(vecbxxveca0 (D) none of these

Prove that vecaxx{vecbxx(veccxxvecd)}=(vecb.vecd)(vecaxxvecc)-(vecb.vecc)(vecaxxvecd)

If veca.vecb=veca.vecc, vecaxxvecb=vecaxxvecc and veca!=vec0, then prove that vecb=vecc.

For vectors veca,vecb,vecc,vecd, vecaxx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc and (vecaxxvecb).(veccxxvecd)=(veca.vecc)(vecb.vecd)(veca.vecd)(vecb.vecc) Now answer the following question: {(vecaxxvecb).xxvecc}.vecd would be equal to (A) veca.(vecxx(veccxxvecd)) (B) ((vecaxxvecc)xxvecb).vecd (C) (vecaxxvecb).(vecdxxvecc) (D) none of these

For vectors veca,vecb,vecc,vecd, vecaxx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc and (vecaxxvecb).(veccxxvecd)=(veca.vecc)(vecb.vecd)(veca.vecd)(vecb.vecc) Now answer the following question: (vecaxxvecb).(vecxxvecd) is equal to (A) veca.(vecbxx(vecxxvecd)) (B) |veca|(vecb.(veccxxvecd)) (C) |vecaxxvecb|.|veccxxvecdD| (D) none of these