Home
Class 12
MATHS
If veca,vecb,vecc are three non coplanar...

If `veca,vecb,vecc` are three non coplanar vectors such that `vecr_1=veca-vecb+vecc,vecr_2=vecb+vecc-veca, vecr_3=vecc+veca+vecb,vecr=2veca-3vecb+3vecc if vecr=lamda_1 vecr_1+lamda_2vecr_2+lamda_3vecr_3` then (A) `lamda_1=7/2` (B) `lamda_1+lamda_2=3` (C) `lamda_2+lamda_3=2` (D) `lamda_1+lamda_2+lamda_3=4`

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are three non-coplanar vectors, then a vector vecr satisfying vecr.veca=vecr.vecb=vecr.vecc=1 , is

veca , vecb and vecc are three non-coplanar vectors and vecr . Is any arbitrary vector. Prove that [vecbvecc vecr]veca+[vecc veca vecr]vecb+[vecavecbvecr]vecc=[veca vecb vecc]vecr .

veca,vecb and vecc are three non-coplanar vectors and r is any arbitrary vector. Prove that [[vecb, vecc,vec r]]veca + [[vecc, veca, vecr]]vecb +[[veca,vec b,vec r]]vecc = [[veca,vec b, vecc]]vecr

If veca, vecb, vecc are three non-zero non-null vectors are vecr is any vector in space then [(vecb, vecc, vecr)]veca+[(vecc, veca, vecr)]vecb+[(veca, vecb, vecr)]vecc is equal to

If veca, vecb and vecc are three non - zero and non - coplanar vectors such that [(veca,vecb,vecc)]=4 , then the value of (veca+3vecb-vecc).((veca-vecb)xx(veca-2vecb-3vecc)) equal to

Let vecr, veca, vecb and vecc be four non-zero vectors such that vecr.veca=0, |vecrxxvecb|=|vecr||vecb|,|vecrxxvecc|=|vecr||vecc| then [(veca, vecb, vecc)]=

Given three non-zero, non-coplanar vectors veca, vecb and vecc . vecr_1= pveca + qvecb+ vecc and vecr_2= veca + pvecb+ qvecc . If the vectors vecr_1 + 2vecr_2 and 2 vecr_1 + vecr_2 are collinear, then (p, q) is

Show that the plane through the points veca,vecb,vecc has the equation [vecr vecb vecc]+[vecr vecc veca]+[vecr veca vecb]=[veca vecb vecc]

If veca,vecb,vecc are unit vectors such that veca+vecb+vecc=0 then veca.vecb+vecb.vecc+vecc.veca= (A) 3/2 (B) -3/2 (C) 2/3 (D) 1/2

If veca, vecb, vecc are non coplanar vectors and lamda is a real number, then [(lamda(veca+vecb), lamda^(2)vecb, lamdavecc)]=[(veca, vecb+vecc,vecb)] for