Home
Class 12
MATHS
Assertion: Angle between veca and vecb i...

Assertion: Angle between `veca and vecb is (2pi)/3`, Reason: `|veca+vecb|^2=|veca|^2+|vecb|^2+2|veca.vecb|` (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Promotional Banner

Similar Questions

Explore conceptually related problems

Assertion: |veca+vecb|lt|vec-vecb| , Reason: |veca+vecb|^2=a^2+b^2+2veca.vecb. (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Assertion : A^-1 exists, Reason: |A|=0 (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Assertion: Let veca=hati+hatj and vecb=hatj-hatk be two vectors. Angle between veca+vecb and veca-vecb=90^0 Reason: Projection of veca+vecb on veca-vecb is zero (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Assertion: r=15 Reason : ^nC_x=^InC_yrarrx+y=n (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Assertion: |veca|=|vecb| does not imply that veca=vecb , Reason: If veca=vecb,then |veca|=|vecb| (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Assertion: If the magnitude of the sum of two unit vectors is a unit vector, then magnitude of their differnce is sqrt(3) Reason: |veca|+|vecb|=|veca+vecb| (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Assertion: If veca,vecb,vecc are unit such that veca+vecb+vecc=0 then veca.vecb+vecb.vecc+vecc.veca=-3/2 , Reason (vecx+vecy)^2=|vecx|^2+|vecy|^2+2(vecx.vecy) (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Assertion: Tr(A)=0 Reason: |A|=1 (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) both A and R is false.

Assertion (A): z/(4-z^2) lies on y-axis. Reason (R): |z|^2= zbarz (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Assertion: If |A^2|=25 then A=+- 1/5 , Reason: |AB|=|A||B| (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.