Home
Class 12
MATHS
Consider three vectors veca, vecb and ve...

Consider three vectors `veca, vecb and vecc`. Vectors `veca and vecb` are unit vectors having an angle `theta` between them For vector veca,`|veca|^2=veca.veca` If `veca_|_vecb and veca_|_vecc then veca||vecbxxvecc` If `veca||vecb, then veca=tvecb` Now answer the following question: The value of `sin(theta/2)` is (A) `1/2 |veca-vecb|` (B) `1/2|veca+vecb|` (C) `|veca-vecb|` (D) `|veca+vecb|`

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider three vectors veca, vecb and vecc . Vectors veca and vecb are unit vectors having an angle theta between them For vector veca,|veca|^2=veca.veca If veca_|_vecb and veca_|_vecc then veca||vecbxxvecc If veca||vecb, then veca=tvecb Now answer the following question: If |vecc|=4, theta cos^-1(1/4) and vecc-2vecb=tvecas, then t= (A) 3,-4 (B) -3,4 (C) 3,4 (D) -3,-4

Consider three vectors veca, vecb and vecc . Vectors veca and vecb are unit vectors having an angle theta between them For vector veca,|veca|^2=veca.veca If veca_|_vecb and veca_|_vecc then veca||vecbxxvecc If veca||vecb, then veca=tvecb Now answer the following question: If vecc is as unit vector such that veca.vecb=veca.vecc=0 and theta= (pi/6) then veca= (A) +-1/2(vecbxxvecc) (B) +-(vecbxxvecc) (C) +-2(vecbxxvecc) (D) none of these

Consider three vectors veca, vecb and vecc . Vectors veca and vecb are unit vectors having an angle theta between them For vector veca, |veca|^2=veca.veca If veca_|_vecb and veca_|_vecc then veca||vecbxxvecc If veca||vecb, then veca=tvecb Now answer the following question: If vecc is a unit vector and equal to the sum of veca and vecb the magnitude of difference between veca and vecb is (A) 1 (B) sqrt(2) (C) sqrt(3) (D) 1/sqrt(2)

If veca and vecb are unit vector and theta is the angle between then, then |(veca - vecb)/2| is:

If veca and vecb are unit vectors, then the greatest value of |veca +vecb|+ |veca -vecb| is

Three vectors veca,vecb and vecc satisfy the relation veca.vecb=0 and veca.vecc=0 . The vector veca is parallel to

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

For two vectors veca and vecb,veca,vecb=|veca||vecb| then (A) veca||vecb (B) veca_|_vecb (C) veca=vecb (D) none of these

If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(veca-vecb)=vecc=0 then (vecaxxvecb)xxvecc is