Home
Class 12
MATHS
If veca, vecb and vecc be any three non ...

If `veca, vecb and vecc` be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and `vecc\'` which satisfies `veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 veca.vecb\'=veca.veca\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0` is called the reciprocal system to the vectors `veca,vecb, and vecc`. The value of `[veca\' vecb\' vecc\']^-1` is (A) `2[veca vecb vecc]` (B) `[veca,vecb,vecc]` (C) `3[veca vecb vecc]` (D) 0

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 veca.vecb\'=veca.veca\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . The value of (vecaxxveca\')+(vecbxxvecb)+(vecccxxveccc\') is (A) veca+vecb+vec (B) veca\'+vecb\'+vec\' (C) 0 (D) none of these

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 veca.vecb\'=veca.veca\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . [veca,vecb,vecc]-(veca\'xxvecb\')+(vecb\'xxvec\')+(vecc\'xxveca\')= (A) veca+vecb+vecc (B) veca+vecb-vecc (C) 2(veca+vecb+vecc) (D) 3(veca\'+vecb\'+vecc\')

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

For any three vectors veca, vecb, vecc the value of [(veca+vecb,vecb+vecc,vecc+veca)] is

For any three vectors veca, vecb, vecc the value of [(veca-vecb, vecb-vecc, vecc-veca)] , is

If veca, vecb and vecc 1 are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb and vecc 1 are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If the vectors veca, vecb, and vecc are coplanar show that |(veca,vecb,vecc),(veca.veca, veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc)|=0

If veca, vecb, vecc and veca', vecb', vecc' form a reciprocal system of vectors then [(veca', vecb', vecc')]=