Home
Class 12
MATHS
If veca, vecb and vecc be any three non ...

If `veca, vecb and vecc` be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\'` which satisfies `veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 `veca.vecb\'=veca.veca\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0` is called the reciprocal system to the vectors `veca,vecb, and vecc`. The value of `(vecaxxveca\')+(vecbxxvecb)+(vecccxxveccc\')` is (A) `veca+vecb+vec` (B) `veca\'+vecb\'+vec\'` (C) 0 (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 veca.vecb\'=veca.veca\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . The value of [veca\' vecb\' vecc\']^-1 is (A) 2[veca vecb vecc] (B) [veca,vecb,vecc] (C) 3[veca vecb vecc] (D) 0

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 veca.vecb\'=veca.veca\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . [veca,vecb,vecc]-(veca\'xxvecb\')+(vecb\'xxvec\')+(vecc\'xxveca\')= (A) veca+vecb+vecc (B) veca+vecb-vecc (C) 2(veca+vecb+vecc) (D) 3(veca\'+vecb\'+vecc\')

For any three vectors veca, vecb, vecc the value of [(veca-vecb, vecb-vecc, vecc-veca)] , is

For any three vectors veca, vecb, vecc the value of [(veca+vecb,vecb+vecc,vecc+veca)] is

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If veca, vecb and vecc 1 are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb and vecc 1 are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If the vectors veca, vecb, and vecc are coplanar show that |(veca,vecb,vecc),(veca.veca, veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc)|=0

For any these vectors veca,vecb, vecc the expression (veca-vecb).{(vecb-vecc)xx(vecc-veca)} equals