Home
Class 12
MATHS
The shortest distance of the point (a,b,...

The shortest distance of the point `(a,b,c)` from x-axis (A) `sqrt(a^2+b^2)` (B) `sqrt(b^2+c^2)` (C) `sqrt(c^2+a^2)` (D) `sqrt(a^2+b^2+c^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Distance of the points (a,b,c) for the y axis is (a) sqrt(b^(2)+c^(2)) (b) sqrt(c^(2)+a^(2)) (c )sqrt(a^(2)+b^(2)) (d) sqrt(a^(2)+b^(2)+c^(2))

The distance of the point P(a ,\ b ,\ c) from the x-axis is a. sqrt(b^2+c^2) b. sqrt(a^2+c^2) c. sqrt(a^2+b^2) d. none of these

The length of the perpendicular drawn from the point P(a,b,c) from z -axis is sqrt(a^(2)+b^(2)) b.sqrt(b^(2)+c^(2)) c.sqrt(a^(2)+c^(2)) d.sqrt(a^(2)+b^(2)+c^(2))

The shortest distance between the line yx=1 and the curve x=y^(2) is (A)(3sqrt(2))/(8) (B) (2sqrt(3))/(8) (C) (3sqrt(2))/(5) (D) (sqrt(3))/(4)

If : a * cos A-b * sin A=c, "then" : a * sin A +b* cos A= A) sqrt(a^(2)+b^(2)-c^(2)) B) sqrt(a^(2)-b^(2)+c^(2)) C) sqrt(b^(2)+c^(2)-a^(2)) D) sqrt(b^(2)+c^(2)+a^(2))

If A(1,-1,2),B(2,1,-1)C(3,-1,2) are the vertices of a triangle then the area of triangle ABC is (A) sqrt(12) (B) sqrt(3) (C) sqrt(5) (D) sqrt(13)

(sqrt8)^(1/3) = ? (a) 2 (b) 4 (c) sqrt2 (d) 2sqrt2

Two parallel lines lying in the same quadrant make intercepts a and b on x and y axes, respectively, between them. The distance between the lines is (a) (ab)/sqrt(a^2+b^2) (b) sqrt(a^2+b^2) (c) 1/sqrt(a^2+b^2) (d) 1/a^2+1/b^2

The shortest distance between the line x=y and the curve y^(2)=x-2 is (a) 2 (b) (7)/(8) (c) (7)/(4sqrt(2)) (d) (11)/(4sqrt(2))

(a+c sqrt(b))(2+y sqrt(b))